Menoufia University
Faculty of Engineering

Final Exam
Academic Year: 2014-2015
Department: Civil Eng.
Year: $4^{\text {th }}$ Civil
Metal. Const. CVE 423
Time Allowed: 4 hours
Date: 26/5/2014

Allowed Tables and Charts: Tables of Steel Sections, Egyptian Code of Practice (ECOP)
This exam measures ILOS No: (a4.1, a4.2, a13.1, $13.2, \mathrm{a} 14.2, \mathrm{~b} 13.1, \mathrm{~b} 15.1, \mathrm{~d} 3.1)$

- Drawings should be neat, detailed and fully dimensioned.
- Any missing data may be reasonably assumed.

Answer all the following questions
[100 Marks]

QUESTION (I) [60 Marks]

The main girders of a roadway pony bridge shown in Figure (1) are two welded plate girders, each having 32.0 m span divided into 8 equal panels 4.00 m each. Height of the web of the main girder $=$ 3.00 m . The cross girders are welded plate girders, each with 14.0 m span and with web height $=$ 1.30 m .

GIVEN

Total steel wt. on one main girder (including own wt) $=1.50 \mathrm{t} / \mathrm{m}$ (for one M.G.).
Equivalent L.L. (including impact) $\quad=10 \mathrm{t} / \mathrm{m}^{\prime}$ (For calculations of M.G only)
D.L. of (slab + cover)

$$
=0.60 \mathrm{t} / \mathrm{m}^{2}
$$

Steel used: St 44 Bolts = HSB M22mm
Welded cross section of Cross Girder: 2 Flanges $\mathbf{3 2 0} \mathbf{x} \mathbf{2 8}+$ Web plate $\mathbf{1 3 0 0} \mathbf{x} \mathbf{1 2}$.

REQUIRED

a. Draw to a scale 1:100 the bracing system required for the stability of the bridge. [10 Marks]
b. Design the required stringers for roadway standard loads
c. Design the connection between the stringer and the cross girder [5 Mark]
d. Design the welded plate girder section of the M.G.
e. Design the field splice of the cross girder, $\mathbf{0 . 7 5} \mathrm{m}$ apart from the main girder
f. Design the end stiffener of the main girder.
g. Design and draw (two views scale 1:10) the roller bearing of the main girder.

QUESTION (II) [40 Marks]

The main girders of a double track railway bridge are two double web welded warren trusses, each having $\mathbf{6 0 . 0} \mathbf{~ m}$ span divided into $\mathbf{1 2}$ equal panels $\mathbf{5 . 0 0} \mathrm{m}$ each, as shown in Figure (2) The height of the cross section is $\mathbf{6 . 0 m}$. Cross girders are welded plate girders spaced at $\mathbf{5 . 0} \mathbf{~ m}$, and with $\mathbf{1 0 . 0} \mathbf{m}$ span and web height equals $\mathbf{1 . 2 0 m}$.

GIVEN

Total steel wt. of the bridge (including wt. of M.G.) $=3.5 \mathrm{t} / \mathrm{m}^{\prime}$ (for one M.G.).
Steel used : St $\mathbf{4 4}$ Bolts diameter $=\mathbf{M 2 4} \mathbf{~ m m} \quad$ Thickness of G.PL. $=\mathbf{1 4} \mathbf{~ m m}$
Distance (b) between the two Gusset plates $=\mathbf{4 0 . 0} \mathrm{cm}$.
Maximum forces are: U2 = $\mathbf{6 8 0}$ ton (Comp.) D1 $=\mathbf{1 6 0}$ ton (Ten.)

$$
\text { D2 }=\mathbf{1 4 0} \text { ton }(\text { Comp. }), \quad \mathbf{U} 1=\mathbf{6 4 0} \text { ton (Comp.) } \quad \mathbf{V}=\mathbf{9 0} \text { ton (Comp. })
$$

REQUIRED

a. Draw with scale 1:00, the bracing system required for the bridge (3-Views).
[10 Marks]
b. Find and the acting load on each bracing system and design the end diagonals of the bracing supported on the bearings.
c. Design members U1 and D1 and choose a suitable section for member D2 and V.

Figure (1)

Figure (2)

With my best wishes,",

